You may have heard the terms “Cold Laser” or “Low-Level Laser Therapy (LLLT)” before. In general, such terms refer to “treatment using irradiation with light of low power intensity so that the effects are a response to the light and not due to heat.”¹ Many of the terms used to commonly describe this process do not ideally reflect the mechanisms of action involved. They also don’t adequately distinguish this type of therapy from the other laser-based therapies that rely on heating tissue to achieve an effect. This lack of clarity has led to significant confusion and a need for better nomenclature.

In September 2014, the North American Association for Light Therapy (NAALT) and the World Association for Laser Therapy (WALT) convened to discuss this issue, and as a result of their efforts, the term “Photobiomodulation Therapy” was added to the MeSH database. This term more accurately reflects the process and better distinguishes it “from the popular use of light-based devices for simple heating of tissues…or other applications of light energy that rely on thermal effects for all or part of their mechanism of action.”²

Photobiomodulation Therapy (PBM)

You may have heard the terms “Cold Laser” or “Low-Level Laser Therapy (LLLT)” before. In general, such terms refer to “treatment using irradiation with light of low power intensity so that the effects are a response to the light and not due to heat.”¹ Many of the terms used to commonly describe this process do not ideally reflect the mechanisms of action involved. They also don’t adequately distinguish this type of therapy from the other laser-based therapies that rely on heating tissue to achieve an effect. This lack of clarity has led to significant confusion and a need for better nomenclature.

In September 2014, the North American Association for Light Therapy (NAALT) and the World Association for Laser Therapy (WALT) convened to discuss this issue, and as a result of their efforts, the term “Photobiomodulation Therapy” was added to the MeSH database. This term more accurately reflects the process and better distinguishes it “from the popular use of light-based devices for simple heating of tissues…or other applications of light energy that rely on thermal effects for all or part of their mechanism of action.”²

Did You Know?

That laser therapy is the modality of choice in professional and collegiate athletics? LightForce Therapy Lasers (the human counterpart to Companion) are utilized by over 100 professional and collegiate teams.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page Range</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 1 - 6</td>
<td>How it Works</td>
</tr>
<tr>
<td>PG 7</td>
<td>Practical Applications</td>
</tr>
<tr>
<td>PG 8 - 10</td>
<td>Case Studies</td>
</tr>
<tr>
<td>PG 11-12</td>
<td>Companion</td>
</tr>
</tbody>
</table>
Photobiomodulation therapy is defined as a form of light therapy that utilizes non-ionizing light sources, including lasers, light emitting diodes, and/or broadband light, in the visible (400 – 700 nm) and near-infrared (700 – 1100 nm) electromagnetic spectrum. It is a nonthermal process involving endogenous chromophores eliciting photophysical (i.e., linear and nonlinear) and photochemical events at various biological scales. This process results in beneficial therapeutic outcomes including but not limited to the alleviation of pain or inflammation, immunomodulation, and promotion of wound healing and tissue regeneration. The term photobiomodulation (PBM) therapy is now being used by researchers and practitioners instead of terms such as low level laser therapy (LLLT), cold laser, or laser therapy.2

The fundamental principles that underpin photobiomodulation (PBM) therapy, as currently understood in the scientific literature, are relatively straightforward. There is consensus that the application of a therapeutic dose of light to impaired or dysfunctional tissue leads to a cellular response mediated by mitochondrial mechanisms that reduce pain and inflammation and speed healing.3

The primary target (chromophore) for the process is the cytochrome c complex which is found in the inner membrane of the cell mitochondria. Cytochrome c is a vital component of the electron transport chain that drives cellular metabolism. As light is absorbed, cytochrome c is stimulated, leading to increased production of adenosine triphosphate (ATP), the molecule that facilitates energy transfer within the cell. In addition to ATP, laser stimulation also produces free nitric oxide and reactive oxygen species. Nitric oxide is a powerful vasodilator and an important cellular signaling molecule involved in many physiological processes. Reactive oxygen species have been shown to affect many important physiological signaling pathways including the inflammatory response. In concert, the production of these signaling molecules has been shown to induce growth factor production, to increase cell proliferation and motility, and to promote extracellular matrix deposition and pro-survival pathways. Outside the cell, nitric oxide signaling drives vasodilation which improves microcirculation in the damaged tissue, delivering oxygen, vital sugars, proteins, and salts while removing wastes.4

2. Frydrych. The Evolution of Photobiomodulation link.
What do the laser classifications actually mean?

Class IIIb: IIIb lasers are hazardous to the eye when viewed directly. For visible and infrared devices, emission power is limited to 0.5W. Protective eyewear, key switches, and safety interlocks are required safety features.

Class IV: Class IV includes all lasers that emit powers in excess of the IIIB limitation of one half of one-watt. Eye protection is needed to limit both direct and diffuse reflected exposure. Key switches and safety interlocks are also required safety features. The majority of scientific, industrial, military, and surgical lasers are in this category.

Power: Class IIIB lasers are limited to a maximum power of a 0.5 Watt. Class IV therapy lasers typically enable the user to select from powers of a 0.5W up to 15 Watts. Increased power enables the clinician to treat a larger area in a shorter period of time, thus allowing an efficient delivery of a therapeutic dose to target tissues.

Treatment Strategies: Due to their power differences, Class IIIB and Class IV laser treatment strategies vary. Class IIIB lasers are often used to treat single points or a group of small points and are held in one place for the duration of the treatment time at each point. When treating with a Class IV therapy laser, the clinician may treat a much larger area, (ex. 300 cm² for the anatomical area of a large dog’s hip); the treatment head is moved throughout the duration of the treatment to ensure a therapeutic dose of energy is being delivered evenly to the entire target area and its associated tissues. Class IV laser therapy can also be administered using contact or non-contact treatment heads.

Dosing Strategies: Relative to Class IV lasers, Class IIIB lasers deliver a smaller dose of Joules to a smaller area of tissue. Typically treatments are confined to discrete points. A potential weakness of this technique is the variability of clinical results due to the exact placement of the treatment points. The foundation of Class IV laser therapy is based on the delivery of a therapeutic dose of Joules to a large area of target tissue, reducing variability in outcomes. For example, on the lumbar spine of a large dog, to deliver an effective dose for arthritis of 10 Joules/cm², a Class IV therapy laser set at 10 Watts in continuous wave would deliver 6,000 Joules of energy in a 10 minute treatment session. It would take a 0.5 Watt Class IIIB laser 200 minutes to deliver the same dose.

Wavelengths: Different therapeutic lasers often have different treatment wavelengths ranging from 700 nm to 980 nm. All wavelengths in this therapeutic window target the same photobiomodulation. The main difference between wavelengths is the absorption of the light by tissue components such as water and melanin.

The Keys To Therapeutic Success - It’s Not a Class War

- Minimize Light Loss Due to Reflection
- Select the Appropriate Wavelength
- Deliver Sufficient Power
- Minimize Absorption by Molecules not Involved in Photobiomodulation
Shorty after the laser was invented in
short incisions appeared to heal faster on laser-treated animals. These various medical light therapy devices. A look at the research will help you better understand light therapy.

Photobiomodulation
Shortly after the laser was invented in 1960, Endre Mester noticed that applying laser light to the backs of shaven mice caused their hair to grow back more quickly than in mice not exposed to laser. He also observed that skin incisions appeared to heal faster on laser-treated animals. These findings initiated research to understand the effects of light on living cells and the mechanisms involved.

Hundreds of scientific studies have been conducted \textit{in vitro} to characterize the dosages needed to achieve a cellular response with light. These studies give a baseline for the amount of laser energy needed to achieve results at the cellular level.

Over the past 30 years, researchers have come to accept the term “photobiomodulation” to describe the process by which light stimulates or inhibits cell function. Many terms have been used to describe the therapeutic use of light devices. One of the more frequently used terms has been low-level laser therapy (LLLT); however, devices that use light-emitting diodes (LEDs) are not included in the term even though an LED-based device may be able to deliver an LLLT response.

There was reluctance to adopt the term photobiomodulation because it was not a MeSH (Medical Subject Heading) search term. MeSH is contained in the National Library of Medicine’s controlled vocabulary, which consists of terms that are used to index articles in the world’s leading biomedical journals. In 2014, a consensus nomenclature meeting was held and subsequently the term “photobiomodulation therapy” was chosen to be added to the MeSH database as an indexing term.

Photobiomodulation therapy is defined as the therapeutic use of light, absorbed by chromophores found in the body,
As with any complicated technology, even if you don't understand exactly how it works, you should have a basic grasp of the mechanisms involved.

trigger nonthermal, non-harmful biochemical reactions that result in beneficial therapeutic outcomes.3

Protocols for use
Appropriate dose selection is critical to the safety and effectiveness of photobiomodulation therapy. To get clinical results, sufficient light must reach the target area. There are various parameters to consider when calculating dose, including power density or irradiance, treatment time, wavelength, pulsing, and application technique.6

The therapeutic dose is measured in joules (J) delivered per square inch of surface area.7 Much of the research conducted in the field has involved cell or small animal studies in which low power and small beam size were sufficient to treat the cells or muscles. A recent study published by Anders, et al., reported the successful translation of in vitro results obtained in the petri dish by using those parameters to treat surgically repaired peripheral nerves in vivo.8 The researchers found an increase in nerve repair in vivo to be 97.5% better than that required when delivered on the surface of the skin.

Power and density
The FDA regulates lasers for medical use. Unlike surgical medical lasers, which use precisely focused light to treat or remove tissue, therapy lasers do not focus light and do not harm tissue. Therapy lasers typically have a lower power density or irradiance (i.e., the power is spread out over a larger area). The FDA designates these lasers as biostimulation lasers.8

The FDA also classifies lasers by their output power. Early FDA-approved therapy lasers were Class 3B lasers (maximum 0.5 watts). In 2003, the FDA approved the first Class 4 laser (greater than 0.5 watts) for the relief of minor muscle and joint pain. The higher powered lasers make it possible to not only apply the benefits of photobiomodulation superficially, but also to treat a greatly expanded range of conditions by delivering a clinically effective dose to target areas below the skin (e.g., hamstring muscles), and in a shorter period of time.9

Optimal wavelength
For light to produce beneficial therapeu-ctic outcomes, it must be delivered at an appropriate wavelength and with sufficient intensity to the target tissue. One range of wavelengths has been referred to as the “optical window” for photobiomodulation therapy, where there is minimal absorption from different substances (e.g., water, hemoglobin, and melanin).

The current understanding is that light in the visible range (600 to 800 nanometers) is absorbed more by hemoglobin and melanin, so these visible wavelengths are better suited for superficial areas. To effectively treat deeper musculoskeletal conditions, therapy lasers should be in the near-infrared range (800 to 1,000 nanometers).

Understanding pulsed laser Photobiomodulation therapy can be delivered in either continuous wave (CW) or pulsed mode. Typically there are two types of pulsing used in therapy lasers—superpulsed or gated.10 Various claims suggest the ideal pulsing frequencies; however, there are no published reports on the advantages of pulsed light in reducing pain and inflammation in humans. A review by Hashimi, et al., that looked at CW versus pulsed light concluded that more evidence is needed.

When the laser is used in gated mode, it is cycling its CW power on and off and consequently delivering a lower average output power. In general, the use of pulsing decreases light delivered to the target. On the other hand, in instances where there is a concern about heating tissue, such as in treatment of the brain, pulsing can be used to further control the output power of the laser. In a recent paper that looked at human cadaver brain tissue, there were no differences observed in light penetration between pulsed and CW laser light.11

Implementation and application
As with any complicated technology, even if you don’t understand exactly how it works, you should have a basic grasp of the mechanisms involved. If you are using a laser that has preprogrammed protocols, understand the differences between treatments when your patient’s skin color is light or dark, or their body size is small or large. For example, if the laser is set to 800 and 810 nanometer light for treatment of light skin, it may switch to only 980 nanometer light to treat dark skin. Protocols for larger bodies will deliver a larger dose compared to treatment of a patient with a smaller build.

Additionally, a significant amount of light is lost when you operate in non-contact mode due to reflecton from skin and hair surfaces. Therefore, it is advantageous to treat on contact, and it is especially helpful if you are able to compress the tissue (and blood) to deliver even more light to deeper tissues.

A bright future
Scientifically sound research is advancing in the field of photobiomodulation, and light-based devices can be used to address a variety of medical issues.12 When a comprehen-sive treatment approach is used, laser therapy is an effective modality.13–15 Lasers are being used with great success in chiropractic, veterinary medicine, professional sports, and rehabilitation clinics around the world.18,19

References

Anti-Inflammation
Laser therapy reduces inflammation with vasodilation, activation of the lymphatic drainage system, and reduction of pro-inflammatory mediators. As a result, inflammation, erythema, bruising, and edema are reduced.

Analgesic Effect
Laser therapy of diseased and damaged tissue produces a suppression of hypersensitive nociceptors, normalization of the membrane firing threshold, and an increased release of tissue endorphins. The result is a decreased patient perception of pain.

Accelerated Tissue Repair and Cell Growth
Photons of light from lasers penetrate deeply into tissue and accelerate cellular reproduction and growth. Laser light increases the energy available to the cells so that they can take on nutrients and get rid of waste products more quickly.

Improved Vascular Activity
Laser light significantly increases the formation of new capillaries in damaged tissue. This speeds the healing process, resulting in more rapid wound closure.

Increased Metabolic Activity
Laser therapy of diseased and damaged tissue produces a suppression of hypersensitive nociceptors, normalization of the membrane firing threshold, and an increased release of tissue endorphins. The result is a decreased patient perception of pain.

Trigger Points and Acupuncture Points
Laser therapy stimulates muscle trigger and acupuncture points without mechanical invasion to provide musculoskeletal pain relief.

Reduced Fibrous Tissue Formation
Laser therapy reduces the formation of scar tissue.

Improved Nerve Function
Slow recovery of nerve functions in damaged tissue may result in numbness and impaired limbs. Laser therapy accelerates nerve cell regeneration.

Immunoregulation
Therapy laser photons have an effect on the immune system’s status through stimulation of immunoglobins, neutrophils, and lymphocytes.

Faster Wound Healing
Laser light stimulates fibroblast development. Fibroblasts produce collagen, which is predominant in wound healing in damaged tissue. Collagen is the essential protein required to replace old tissue or to repair tissue injuries. As a result, laser therapy is effective on open wounds and burns.
What Role Does Power Play in Dosing?

There are many different types of veterinary laser therapy devices. Class IV, Class IIIB, Class III, and even Class II lasers may be used for therapy. One parameter that separates these lasers from one another is its available power. What role does power play in achieving clinical results for pet pain?

Power impacts the functional depth of penetration of the laser light. The combination of treatment time and power determines the therapeutic dose of energy that is received by tissues at depth. If a therapy laser has low power, the total number of Joules it can deliver to relevant depths for treating most musculo-skeletal conditions in a realistic treatment time is very low.

For example, to treat the lumbar spine for arthritis on a large dog with a treatment area of 300 cm², since it is a deep condition, an effective target dose of 10 Joules/cm² is 3,000 Joules (300cm² x 10 J/cm² = 3,000 J). Below is an example of how long it would take to deliver 3,000 J of therapeutic energy with 4 different lasers of varying power capabilities:

- 5mW Laser = 10,000 minutes (166.7 hours)
- 500mW Laser = 100 minutes (1 hour 40 min.)
- 3W Laser = 16.7 minutes
- 10W Laser = 5 minutes

Therefore, treating with a low-powered laser will deliver less than the identified therapeutic dose of 3,000 Joules simply because the treatment time is unrealistic. Companion Therapy lasers enable you to deliver power from 500mW up to 15 Watts giving you the flexibility you need to give every condition the appropriate therapeutic dose. Understand the difference between class IV laser therapy and other therapy devices before you invest.

What is Your Time Worth?

Your time is valuable – and providing your patients with the best care in the most efficient amount of time is a priority. Class IV therapy lasers are a great resource to maximize your staff's efficiency in treating your patients.

Class IV laser therapy enables you to deliver a therapeutic dose of Joules (J) to a larger area of target tissue in a shorter period of time: ultimately resulting in positive, consistent, clinical results. Higher power and the option to deliver treatment in continuous wave give the clinician the flexibility to deliver the therapeutic dose of energy in less time than with other lower-powered devices. This technology is very effective at reducing pet pain and speed healing.

Class IV laser therapy is often able to provide pain relief to pets suffering from a variety of conditions such as arthritis and otitis. Flexibility of treatment delivery gives the clinician the power to deliver therapy in either contact or non-contact mode to maximize results based on the presenting condition.

Provide your patients with a quick, medication-free solution to their pain while maximizing staff efficiency in the clinic with a Companion therapy laser.
Laser Therapy: A Powerful Adjunct

Due to the drug-free, non-invasive nature of laser therapy it is often used as a powerful adjunct to existing treatment protocols. It can be used before, during, or after surgical procedures, alongside pharmacological management of certain conditions, and in conjunction with rehabilitation programs. Since laser therapy has a broad spectrum of physiological effects, mainly surrounding the reduction of pain and inflammation and increasing the speed of healing, it is a versatile tool as part of a multi-modal approach to treating MANY common conditions in veterinary medicine.

Common Acute Conditions That Benefit from Laser Therapy

- Abscesses
- Acral Lick Dermatitis
- Acute Nephritis
- Acute Pain
- Bacterial Infections
- Burns
- Edema
- Fractures
- Fungal Infections
- Mastitis
- Otitis
- Post Surgical Pain Relief
- Post-Operative Healing
- Pyotraumatic Dermatitis
- Skin Grafts
- Snake Bites
- Soft Tissue Trauma
- Sprains & Strains
- And More...

Common Chronic Conditions That Benefit from Laser Therapy

- Arthritis
- Bursitis
- Chronic Pain
- Degenerative Joint Disease
- Feline Asthma
- Geriatric Disorders
- Gout
- IVDD
- Neurological Disorders
- Orthopedic Disorders
- Otitis
- Pyoderma
- Respiratory Disorders
- Stomatitis
- Urinary Tract Disorders
- And More...
Baring Boulevard Veterinary Hospital, Severe Demodicosis, American Staffordshire Terrier

Author: Baring Boulevard Veterinary Hospital, Reno, NV

Signalment: 2 year old, M/N, American Staffordshire Terrier, “Bosley”

Presentation: Presented after being taken in by Animal Control, received single dose of Ivermectin SC injection and had received Prednisone 20mg PO SID for unknown duration. DVM diagnosed severe Demodicosis and discontinued steroids, started Cephalexin and benzoyl peroxide bathing/shampoo, daily Ivermectin PO and laser therapy.

Treatment Details: Started laser therapy on 1/29. Approximately 85% of total skin surface treated for total dose of 16,200 J at 6W over ~3,200 cm² (5 J/cm²).

Every other day treatment for 5 treatments, then weekly through 3/1 when all lesions resolved.

Treatment Results: “Patient’s skin lesions/disease showed rapid reduction in erythema, crusting, and pruritis leading to marked improvement in patient’s comfort level while managing/treating generalized demodicosis/pyoderma. Overall healing process was dramatically accelerated by laser therapies and most importantly comfort was markedly improved throughout laser therapy period.” – Dr. Sara Hogel

“The Companion Laser is the best investment I have ever made. And Companion is the best company I have ever worked with.”

Gary E. Stevens, DVM
Care Hospital for Animals
Oshkosh, Wisconsin
Signalment: 5 year old, M/N, DSH Feline, “Stewie”

Presentation: Presented in 2009 with mild stomatitis. Treated over the next four years with a combination of steroids, diet change, antibiotics, homeopathy and multiple pharmacologic analgesics as well as partial dental extraction. Patient also experienced feline hyperesthesia, constantly biting and chewing his skin, and was treated with amitriptyline as well.

Secondary to the long term use of steroids for his stomatitis, Stewie’s skin was very thin and tore easily, resulting in four episodes of skin tears/ wounds created by normal grooming

Complications from suturing these wounds and the placement of Penrose drains in his thinned skin resulted in further skin tearing. Despite extensive workup and therapies, Stewie’s stomatitis continued to worsen and by April 2013, he was anorexic and had experienced weight loss secondary to this. Additionally, he was withdrawn and painful and the owners were considering euthanasia due to his poor quality of life.

Dr. Smith outlined each problem and complication, adding that each new issue and its treatment seemed to complicate or exacerbate his other problems. “For instance, each skin tear seemed to increase the hyperesthesia, and Stewie’s attempts to deal with the hyperesthesia created more skin tearing. It was difficult to orally medicate him because his mouth was so painful. Weight loss also reduced his immune resistance. Stewie, who had been a lively, friendly cat, refused to get out of bed, eat or interact with the owners or the other cat.”

Treatment Details: Stomatitis – Open Mouth = 186 Total Joules (at 3W), Closed Mouth = 360 Total Joules (at 4W); Wound – 2×3 = 196 Total Joules to 45 cm² area (4.35 J/cm²) at 2W

Stewie was initially treated 2 to 3 times weekly, decreasing treatment frequency as his condition improved.

Treatment Results: By improving the quality of his skin and decreasing his somatic pain, his owners felt his improved quality of life justified further [dental] extractions. …Laser treatment following his oral procedures allowed the gingival, tonsillar and lingual lesions to heal.

“By removing most of the remaining problem teeth and following up with laser treatment for post-extraction healing, Stewie’s appetite returned, he began to eat normally and put on weight. We were able to significantly reduce pain medication and completely eliminate antibiotics and steroids.” – Dr. Smith
Webinar: Case Highlight
Photobiomodulation Benefits for Very Difficult Cases

In this 60-minute webinar, presented by Ronald J. Riegel, DVM learn about laser therapy for hard-to-treat conditions.

Watch it now at: http://www.litecureinfo.com/PhotobiomodulationForDifficultCases
5 Things to Ask Before You Buy a Therapy Laser

If you are thinking of adding Class IV laser therapy to your practice there are a few questions you should ask before you make a purchase. You should be purchasing more than a laser for pet pain – but a total solution for your practice. Here are 5 questions you should ask a your sales representative before you buy:

1. Implementation: Many companies say they provide implementation solutions for your practice, but take the time to dig deeper to understand the details of the support materials they provide. Does the implementation program help educate the staff and clients alike? What components are really included in the program?
Some companies offer comprehensive marketing toolkits that include both staff and patient education tools. The more comprehensive toolkits should include client education videos, presentations, ads, banners, training videos, promotional materials for the office, website resources and marketing tips. Also ask if they have a marketing consultant too – this added service can be a huge asset to your practice.

2. Downtime: When adding any type of capital equipment to your practice there is always the possibility that the unit will require repair or maintenance. Ask your sales representative what happens if your laser therapy equipment experiences a failure. Will they send you a loaner unit? How long will it take to repair your unit? The answer you should get is that the company will deliver a loaner system to you overnight to ensure you don’t go a day without your therapy laser.

3. On-Going Laser Therapy Education: Ask about what kind of educational opportunities are available after you purchase your laser therapy equip-

ment. Some companies offer on-going seminars, webinars, users’ conferences, and special CE events. Also ask if the company you plan to work with is engaged in scientific studies – is the company continuing to educate itself too? The strong companies are constantly striving to learn and teach.

4. Clinical Support: If a patient comes in and you are not sure how to approach their condition is there someone at the laser therapy company you can talk to? Clinical support is a must-have. Ask about who the clinical experts are on staff that will answer your questions – what are their credentials?

5. Customer Care: Is there a dedicated customer care department? How long does it take for them to get back to you? When you are having a problem the last thing you want to do is wait. Go with a company who prides itself on outstanding customer care after the sale.

Class IV laser therapy can have a real impact on your patients and your practice. Be sure you are selecting a company who will be your laser therapy partner for the long-term.

Did You Know?

Companion Therapy Lasers are manufactured in the USA?
Why Choose Companion®?

The Company

Innovation
Whether you are considering adding laser therapy, regenerative medicine, or another Companion rehabilitation product - Companion allows you to practice reliable, innovative medicine.

You can elevate your standard of care with confidence. Keep a finger on the pulse of the most innovative therapeutic solutions with Companion.

Partnership
You don’t just purchase a product with Companion - you gain a clinical and business partner. Leverage the Companion CORE business consulting program to realize success with any Companion Product.

Education
Never be left behind - Companion provides you with the most current research and applications through a multi-channel education program.

Versatility
Effectively treat a wide variety of clinical conditions with a Companion product.

Synergy
Realize synergy by leveraging multiple Companion products to achieve the best clinical outcomes for every patient. Every time.

The Therapy Lasers

Outcomes
Backed by scientific evidence and on-going research you can achieve the best results with a Companion Therapy Laser. On-going software updates ensure you are always practicing the most current medicine.

Achieve results on acute and chronic conditions alike. Treat with ease with the most species-specific protocols available on any therapy laser on the market.

Clinical Support
Veterinarians are on staff and available to answer your clinical questions. Receive on-going clinical training with monthly webinars and other Companion University educational opportunities.

ROI
Realize ROI with the Companion CORE implementation program. The program includes one-on-one consulting.

Education
Attend live events or monthly webinars for the latest applications.

Customer Support
Never spend a day without your most versatile tool. Customer support and a loaner program ensures you are always up-and-running.
For more information about how a therapy laser can transform your clinic call 877-627-3858 to set up your in-office demonstration.